γ-Jet Studies

Joe Osborn University of Michigan

Physics Motivation

- PRD 81,094006 (2010)
 predicted factorization breaking
 in p+p—>h₁+h₂+X
- Nonperturbative PDFs and FFs quantum mechanically correlated across hadrons
- Important check of understanding of perturbative QCD in a transverse momentum dependent framework - results from same physical mechanism leading to Sivers sign change

- Perturbative evolution predicts that momentum widths sensitive to nonperturbative transverse momentum should increase with increasing hard scale
- Confirmed in Drell-Yan and Semiinclusive deep-inelastic-scattering

Physics Motivation

- PHENIX recently submitted arXiv:1609. 04769, dihadron and direct photon-hadron correlations
- Measurements show opposite trend from perturbative evolution prediction
- Ideal measurement is photon-jet: can study factorization breaking with control over fragmentation
- While more "cold QCD" focused, there are many similarities and avenues of potential questions to jet structure and fragmentation

Method

- Used Dennis' γ-jet HEPmc PYTHIA8 files from sPHENIX collaboration meeting and ran them through GEANT4 sPHENIX detector with Fun4All_G4_sPHENIX.C
- Using my analysis code Photon-Jet (in GitHub under PhotonJet) which produces trees of photonjets, photon-hadrons, etc. to compare reconstructed objects to truth objects and their effects on observable p_{out} and angular correlations

Isolation Cut

- Studying effect of isolation cut on direct photon
- Current requirements:
- Isolation cone of $R = \sqrt{(\Delta\phi)^2 + (\Delta\eta)^2}$ 0.4 radians
- Entire isolation cone region restricted to be within |η|<1

$$0.1 \times \Sigma(E_{\gamma} + p_T^{tracks}) < E_{\gamma}^{iso}$$

- Results in ~4000 of the 10000 photons
- This can obviously be altered depending on isolation cone size, energy restriction, etc.

γ and Jet pt

 Find similar results for isolated direct photons to Dennis' studies for all direct photons

sPHENIX γ-Jet

- To measure
 p_{out}=p_Tassocsin(Δφ),
 need good resolution
 of jet angles and p_T
- φ and η resolution~0.02-0.04

Δφ Resolution

- Δφ resolution appears to be pretty good. Slightly offset from 1, perhaps some acceptance effects
- $\Delta \Phi = p_T^{trig, \gamma} p_T^{assoc, jet}$

Δφ Response

- Iso photon-jet Δφ
 distributions compare
 reasonably with truth
 distributions
- Binning is symmetric about π, so some acceptance effects in the reconstructed distribution are apparent

pout Response

- Expect that mean of
 Gaussian should be
 centered at 0 displacement
 follows from Δφ distribution
 being asymmetric
- Reco not acceptance or jet response corrected
- At large p_{out} appears that we will have the statistics to differentiate between nonperturbative k_T and perturbative k_T

Summary

- Interested in studying γ-jet at sPHENIX to continue investigation of possible factorization breaking in p+p collisions
- Working with Dennis' γ-jet simulations (for now) and looking at isolation cut. So far shows no major effect/difference from Dennis' studies
- To Do
 - Possibly do some embedding studies or study sPHENIX ability to reconstruct direct photon-jet events in all QCD hard scattered events
 - Generate PYTHIA files for lower momentum direct photons would like to look at a range of p_T^V ideally as low as 10 GeV/c (can we reconstruct a jet with ~7 GeV/c p_T?)

Back Up/Extras

Reco pout Distributions

- Fragmentation greatly draws in transverse momentum dependence
- γ-jet sensitive to only initial-state k_T while γ-hadron is sensitive to initialstate and final-state k_T and j_T

X_J Distributions

- x_J distributions similar in reconstructed vs. truth
- Reco not corrected for detector photon/ jet response

ф Residual

